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Abstract—To examine how local velccities from different regions of the visual field combine to form a
coherent motion percept, we subjected a sinusoidal line stimulus to translational motion. Horizontal
movement of a sinewave line along its axial direction is perceived as nonrigid if the angle at the zero
crossing is smaller than a critical angle of about 15deg. This angle is independent of spatial scale and
the number of sinusoidal cycles. To extend the applicability of this concept of angle, we developed a
mathematical model to predict an observer’s sensitivity to small changes in motion direction based on
two assumptions: (1) the computed velocity signal is obtained from the intersection of constraint lines
defined by local velocity components, (2) local velocity components are contaminated by noise.
Measurement of directional discrimination thresholds of moving targets confirmed our expectations.
Thresholds varied as a function of the angle of the local contour independent of spatial scale and in

quantitative accord with our assumptions.

Motion Velocity Aperture problem

INTRODUCTION

Motion is a specialized visual sense useful for a
variety of visual tasks including a reconstruction
of the third dimension, delineation of surface
boundaries, visual kinesthesis, controlling of eye
movements, mediation of size constancy, pat-
tern vision, etc. (see Nakayama, 1985).

At first glance it would seem that compu-
tation of velocity at each region in the visual
field would be easy. There are numerous cortical
neurons in the visual field sensitive to particular
directions of motion (Hubel and Wiesel, 1962;
Schiller et al., 1976). In addition many are pref-
erentially tuned to a narrow range of velocities
(Orban et al., 1981). Recent work, however,
suggests that the problem is more complicated
and that a direct reading of the velocity vector
for a given retinal position might require further
stages of neural processing (Fennema and
Thompson, 1979; Horn and Schunk, 1979;
Adelson and Movshon, 1982; Ullman, 1983; see
also Wallach, 1935; Burt and Sperling, 1981).

The problem can be appreciated by consider-
ing the properties of a cortical neuron with a
spatially elongated receptive field. If the output
of this cell varies with the velocity of a line
moving at right angles to its preferred orien-

tation, one might assume that this output signal
would be sufficient to measure the velocity of
the moving line [see Fig. 1 (A)]. Such a measure-
ment of velocity, however, is only a local read-
ing of velocity. As such we designate it with the
term V7. The real velocity of a moving stimulus
(designated as V) could be quite different. In
fact an infinite number of velocities (V) could
have given rise to any given local velocity (V)
and these can be represented by an arrow falling
on the constraint line shown in Fig. 1(B). There-
fore a local reading of velocity by an orientation
and directionally selective detector does not
specify the actual target velocity.

Yet this sampling of a local velocity is highly
informative, because it takes only two linearly
independent readings of local velocity to recon-
struct the true velocity (Fennema and Thomp-
son, 1979). Each local reading defines a con-
straint line of possible velocity vectors which
could have given rise to the local velocity vector
[see Fig. 2(A)). The intersection of two such
lines in a hypothetical velocity space specifies
the true velocity vector [see Fig. 2(B)].

In addition to outlining an exact and intuitive -

description as to how the aperture problem
could be solved, Adelson and Movshon (1982)
also provided supporting evidence using simple
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Fig. 1. The aperture problem. The direction of and mag-
nitude of motion cannot be determined by a single oriented
unit. Assume that an oriented receptive ficld can read the
component of velocity orthogonal to its preferred orien-

tation, providing the nervous system with a local reading of |

velocity ¥, at an aperture. This local velocity vector is

generally not the same as the true velocity vector V. In (B)

we see that V_ constrains but does not uniquely determine

the velocity vector giving rise to V, since a whole set of
vectors could have generated V.

and compound patterns made up of sinusoidal
gratings of differing orientations. They reported
that two crossed gratings would be seen as
moving in a direction which conformed to the
intersection of such hypothetical lines in vel-
ocity space. They also demonstrated that the
solution does not conform to a number of other
schemes. For example, it cannot be predicted
from the vector sum or the maximum velocity or
the average of the component velocities (see also
Daugman, 1981). From these considerations,
Adelson and Movshon proposed that velocity
encoding requires yet another stage of neural

processing beyond that seen in the measurement
of local velocity vectors. “True” velocity units
must combine information from at least two
different component units. Figure 2(C) repro-
duces Adelson and Movshon’s picture of a
hypothetical higher order unit, consisting of
components which have a +90° range of local
directions each having corresponding best vel-
ocity proportional to cos(f) of the preferred
velocity. Examination of the receptive field
properties of cells in area MT of the primate
reveals a class of units which is consistent with
this hypothesis. Such units respond to the over-
all pattern motion and not to local components
(Movshon et al., 1984; Albright et al., 1984).

In this paper we extend the examination of
the aperture problem in one unexplored direc-
tion. Adelson and Movshon emphasized the
combination of orientated velocity -signals at
the same spatial locus. We deal explicitly with
the possible combination of orientation and
velocity signals over disparate regions of the
visual field.

As an introduction to this approach, consider
the planer curve as depicted in Fig. 2(A), mov-
ing to the right with a constant velocity V. Each
portion of the curve has a local velocity Vi
which is different from other local velocities and
which is generally very different from the true
velocity V, yet we usually do not see these
different local motion vectors. Instead we see
the coherent motion of a rigid object. This
rather flawless perceptual synthesis suggests
that the combination of orientation and velocity
signals can occur across a spatially extended
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Fig. 2. (A) Figure which undergoes pure translation in the image plane with velocity designated by V.

Arrows designated by ¥, represents just two of the infinitely many local velocity vectors which accompany

this image translation. Note that a give local velocity vector is orthogonal to its local contour and has

a magnitude proportional to ¥ cos 6 where theta is the difference in angle between the local velocity and

the “true” velocity. (B) The local velocity vector have been replotted in a velocity space along with their

corresponding constraint lines. Note that the intersection of these constraint lines represents the “true”
velocity V.
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Fig. 3. Sinewave line stimuli which move at velocity V.
Because the angle at the zero crossing for the upper sine
wave (A) is larger than a critical angle, this waveform is seen
as moving rigidity, The lower sinewave (B), however, is seen
as moving nonrigidly because this critical angle is too small.
V. refers to the local velocity in each figure which has the
largest magnitude. The small arrow in (A) represents a local
component which has the same direction and amplitude as
largest local component in (B).

region and suggests the integration of orien-
tation and velocity signals from different topo-
graphic loci in the cortex. To explore this issue
using psychophysical methods, we looked for a
rigidly moving stimulus where one could con-
sider the effects of two separate parameters,
angle and spatial scale.

Rigidly moving sinusoidal lines with defined
amplitude and spatial frequency provide a
simple yet suitable stimulus (see Fig. 3). By
varying the amplitude of such a sinewave for a
given frequency, one can alter the difference in
angle between angular components. By varying
the spatial frequency of the sinusoidal line one
can alter the distance (or scale) between angular
components. It should be emphasized that this
is a plane curve, not a luminance profile of a
sinusoidal grating.

Initial qualitative observations on figure rigidity

We began our experiments with the rather
surprising observation that rigid horizontal
movement of a sinusoidal line does not neces-
sarily lead to perceived rigid horizontal motion
(see Fig. 3). In the extreme case, one only sees
plastic undulation of the line with no hint of any
translational motion. This was most dramatic
for sinewaves having low spatial frequency and
low amplitude. To our knowledge this is the
first reported description of figural nonrigidity
elicited by pure translational motion in the
image plane. Other nonrigid appearances of
rigid motions have been reported (Wallach and

O’Connell, 1953; Braunstein and Andersen,
1984; Hildreth, 1984) but the motion always had
a rotational component either in or outside the
image plane.

EXPERIMENT 1: PERCEIVED RIGIDITY
AS A FUNCTION OF AMPLITUDE
AND SPATIAL FREQUENCY

To explore the conditions under which rigid
and nonrigid motion were elicited, we varied
various parameters of a sinewave figure. The
sinusoidal line was displayed on a CRT monitor
(Hewlett Packard 1332A with P31 phosphor) by
synchronizing the output of a triggered function
generator to the CRT sweep. The sinusoidal line
was translated in the horizontal direction at
constant velocity by adding a linear voltage
ramp to the oscilliscope X-axis input. By over-
scanning, that is by making the length of the
electronically defined sinusoidal line longer than
the width of the display screen, the right and left
border of the stimulus was fixed and defined by
the edges of the screen. The luminance of the
sinusoidal line was approximately 100 cd/m?
seen against the room illuminated screen which
had a luminance of 2 cd/m? Refresh rate was
100 Hz. The two authors served as observers.

For each trial, the sinusoidal line stimulus
was flashed on a CRT screen. After 200 msec
the line moved either to the left or to the
right on a random schedule at a fixed velocity
(3°/sec). The duration of the motion was
200 msec, short enough to avoid tracking by the
oculomotor pursuit system. The line dis-
appeared 200 msec after the cessation of
motion. The task of the observer was fixate the
center of the display and to decrease the ampli-
tude of the moving sinewave line until it was
just seen as nonrigid. The sinusoidal amplitude
corresponding to this transition between rigidity
and nonrigidity was measured for different
spatial frequencies of the sinusoidal line.

Before reporting on these results we deal with
the possible contaminating factor of temporal
frequency. Consider a sinusoidal line moving
with pure horizontal motion. A given position
along the retina will be exposed to the same
spatial pattern repeating at a given temporal
frequency and this temporal frequency will
change with changes in spatial frequency if
velocity is kept constant. Because it might be
argued that this variation in temporal frequency
could alter ones sense of rigidity, we first exam-
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Fig. 4. Control experiment to deal with possible effects of
temporal frequency variation. Amplitude thresholds to see
rigidity for two spatial frequency sinewaves at different
velocities. The solid dots refer to a spatial frequency of
0.1 c/deg and the solid circles refer to a spatial frequency of
0.25 ¢/deg. Note that there is no systematic difference in the
amplitude to see rigidity for a given spatial frequency as
velocity is varied. Arrow represents the velocity that was
chosen for the data presented in Fig. 5.

ined the relationship between rigidity thresholds
and temporal frequency.

To vary temporal frequency without chang-
ing spatial frequency, we varied velocity. Figure
4 shows the results of this control experiment
indicating that at least over some reason-
able range of velocities, the relation between
threshold amplitude and rigidity is relatively
flat, thus minimizing any subsequent interpre-
tation which could be couched in terms of
temporal frequency. Thus we felt confident to
conduct the experiment at constant velocity and
to vary spatial frequency.

Results of Experiment 1

We found a strong dependence of the ampli-
tude needed to see rigidity in these moving
sinusoidal lines with spatial frequency. The solid
dots in Fig. 5 shows this relation. As spatial
frequency is increased, it takes progressively less
amplitude to see the line as moving rigidly in a
horizontal direction. Furthermore, this line has
a slope of —1 on double logarithmic coordi-
nates. Sinusoidal lines along this reciprocity axis
have a constant maximum angle at their zero
crossings suggesting that a minimum angular
difference in direction between local motion
vectors is required for the observer to see rigid-
ity. The reciprocal relation between amplitude
and spatial frequency and its associated con-
stant angle is illustrated in Fig. 6. For subject
K.N. this angle is about 36° and for J.S. it is
about 28°.
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Fig. 5. Thresholds to see figural rigidity in sinusoidal lines.
Solid dots represents thresholds for Experiment 1 where
spatial frequency was varied and field size was kept con-
stant. Open circles refer to thresholds where a constant
number of cycles was employed (Experiment 2). Best fitting
slope of —1 is shown corresponding to a critical angle of
18 deg. and 14 deg. for J.S. and K.N. respectively. Sinewave
figures with amplitudes above fitted line are seen as rigid,
those below are seen as nonrigid.

EXPERIMENT 2: CONSTANT NUMBER
OF CYCLES

A potential contaminating factor when
measuring thresholds as a function of spatial
frequency is the variation in the number of
cycles which are visible. For a given display size,
increasing frequency is always accompanied by
a proportionate increase in cycle number. If our
notion regarding the maximum angle in the
sinewave is correct, increasing the number of
cycles should not change the results. We con-
firmed this supposition by conducting an experi-
ment where the spatial frequency was varied but
the number of cycles was kept constant. In
this case it was restricted to two cycles. This
limit in the number of cycles was accomplished
by masking off the right and left portion of

¢ = 2
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Fig. 6. Two sinusoids which have reciprocal relations be-

tween amplitude and frequency (having a slope of —1 on a

double log plot as in Fig. 5) share the same maximum
difference in contour orientation.
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Fig. 7. Illustration of how error in the pickup of the local velocity signal can lead to different amounts
of angular discrimination depending on the local angle. In (A), we show how a local velocity signal may
be imprecise, having a random distribution of velocities centering around a mean value. The circle
represents an iso-probability line for the local velocity signal. The four lines passing through the circle
represent a corresponding subset of possible constraint lines which are defined by the “noisy” velocity
signal. (B) and (C) provide a pictorial description of the importance of angle given a fixed amount of error.
At the top of each section is a sinewave line stimulus which is moving in a downward direction. Each
has a pair of local velocities which have the greatest deviation from downward and these are drawn on
the figure and labeled ¥,. The boundary drawn around the intersection of these constraint lines
characterizes the zone of uncertainty. Note that the angle subtended by this zone is much greater for the
case of (B) than for (C). Thus the predicted direction discrimination in (B) is worse than in (C).

the screen with an opaque occluder of the
appropriate size for each spatial frequency. The
open circles in Fig. 5 shows that the results were
identical to Experiment 1, again falling close to
a slope of —1. This provides further evidence
that it is indeed the maximum angle in the
sinewave that dictates whether the figure will be
seen as rigid vs nonrigid.

Discussion of Experiments | and 2 and a theor-
etical formalism

Because the preceding experiments suggested
that the angular relationship between local
motion vectors was decisive, we were motivated
to make a quantitative model to predict the
synthesis of local components into a perceived
velocity vector.

*An elliptical error function, which takes account of the
superior directional precision of local velocity signals in
relation to magnitude signals was also considered (see
Fig. 9 of Nakayama, 1985). Such properties were incor-
porated for the Monte Carlo simulation and its results
had no significant change in the threshold predictions.
Thus over the range of conditions considered here,
velocity magnitude error largely determines the im-
precision of the constraint line intersection.

V.R. 28/6—F

The model extends the concept of Adelson et
al. and Fennema et al., by assuming that the
estimation of the local velocity vectors V is
imprecise, being contaminated by biological
noise. Errors at this level will then be propa-
gated to the solution of the aperture problem in
a predictable fashion. To start, we assume that
the noise is riding on the local velocity signal
and is proportional to the signal itself with a 5%
coefficient of variation. This is a figure which
is consistently obtained from psychophysical
measurements (Nakayama, 1981; McKee, 1981;
McKee and Nakayama, 1984). Thus we repre-
sent each local velocity signal probabilistically,
drawn from a radially symmetric gaussian dis-
tribution centred on the local velocity.* This
leads to a range of possible constraint lines are
illustrated in Fig. 7(A).

Computer simulation of the model was
straightforward. Using a Monte Carlo tech-
nique each of a pair of local velocity signals was
drawn from its local Gaussian distribution. This
defined two constraint lines. The interesection
of these two lines was calculated from the
appropriate pair of simultaneous equations. The
process was repeated and the variance for the
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Fig. 8. Directional discrimination thresholds plotted as a
function amplitude of a sinewave stimulus for three different
spatial frequencies. Numbers next to each curve denote the
spatial period of each sinewave (in degrees of visual angle).

direction of the synthesized velocity signal was
computed for a given set of local velocities.
Given this very simple model with added
“biological”” noise we illustrate how the judge-
ment of the direction of motion is influenced by
the angle of local components in relation to the
global velocity vector. Consider the case where
two targets are moving in a near downward
direction. In Fig. 7(B) the local velocity vectors
are very close together in direction; whereas in-

+The predictions of the model are essentially independent
of the velocity of the target as long as the velocity of
the local component is large enough to ensure that the
velocity magnitude noise remains a constant ratio of the
velocity magnitude signal.
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Fig. 7(C) they are much farther apart. When the
constraint lines defined by local components are
very similar.in orientation, our model predicts
that the precision of the a motion direction
estimate will be very poor. The quantitative
prediction can be understood intuitively in
terms of the intersection of straight lines at
various angles. The intersection loci of velocity
constraint lines which meet at extremely obtuse
angles are likely to wander very significantly for
small pertubations in the position of these lines.
Thus small mis-estimates as to the magnitude of
the local motion vector can have serious con-
sequences in terms of the precision of estimating
the direction of the true velocity vector. The
predicted changes of velocity discrimination as
a function of local angle can be seen by looking
forward to Fig. 9 and noting the solid line.
The predictions of the model depend exclu-
sively on the angular relationships between the
components and its relation to the true direc-
tion. It does not depend on the size of the
angular segments or their spatial separation nor
does it depend critically on the velocity of the
target*. Because this is a rather extreme
simplification of the problem, we looked for an
experimental situation to examine its plausi-
bility. To accomplish this task we measured the
ability of human observers to judge the direc-
tion of motion over a 4:1 range of spatial scale.

EXPERIMENT 3: PRECISION OF MOTION
DIRECTION AS A FUNCTION OF
MAXIMUM ANGULAR DIFFERENCES
IN A SINUSOIDAL LINE FOR
VARIOUS SPATIAL FREQUENCIES

Methods

In this experiment we presented the same
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Fig. 9. Using the same data as in Fig. 8, we plot directional discrimination thresholds as a function of

the angle at the zero crossing. Symbols are the same as in Fig. 8. Note that the data from a 4:1 range

of spatial scale collapses to a simple dependence on angle. Solid line are predicted angular discrimination
thresholds form model described in text.

-
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sinusoidal line stimulus, except we moved it
mostly in a vertical direction rather than hori-
zontally. As a consequence it moved orthogonal
to rather than along its baseline.

Before presenting the exact methods and
results in quantitative terms, qualitative aspects
should be mentioned. Consider the limiting case
where the sinusoidal amplitude of the wavy line
is so small that it appears as straight. In this
case, all of the different directions of motion will
look equivalent, an experimental example of the
aperture problem. All will appear as if the line
were moving at right angles to its orientation.
With a much larger amplitude in the sinusoidal
line, it should be clear that the sideways com-
ponents of motion can be encoded and the
observers angular thresholds should fall.

To obtain a quantitative measure of the ob-
server’s angular discrimination thresholds, we
used the method of constant stimuli. At random
interval the target line would appear, immedi-
ately move in a downward or nearly downward
direction for a period 200 msec, and then dis-
appear. On any given trial, 1 out of 5 possible
directions of motion were presented. The ob-
servers task was to respond as to whether the
target appeared to move to the right or left in
its downward traverse. The percent “rightward”
response was tabulated and used to compute a
directional discrimination threshold by probit
analysis. Threshold angles were defined as those
which corresponded to a d’ of 0.675. Figure 8
shows these thresholds plotted as a function of
the amplitude of the sinewave for 3 different
spatial frequencies.

Because our model predicts that directional
discrimination depends on the difference in
angle between local motion components, with-
out regard to differences in distance between
these angles, the data in Fig. 8 can be trans-
formed so that abscissa represents the maximum
angular difference in the sinusoidal line regard-
less of spatial frequency. Figure 9 shows the
angular discrimination thresholds plotted as
function of angle rather than of amplitude in the
sinewaves. Despite the very large difference in
spatial frequency for the three conditions, it
should be clear that the data was essentially
coincident in terms of precision versus max-
imum angle. The predictions of our simulation
are summarized by the solid line. It should be
evident that the data are in substantial agree-
ment with the predictions, particularly for slope
of the relation between maximum local angle
and the discrimination threshold.

Discussion

Before providing an interpretation of our
results in terms of oriented local velocity signals,
we consider one alternative explanation. Instead
of synthesizing a velocity signal from oriented
components, one could argue that our visual
system encodes the movements of partially
defined nodes or blobs. For the case of the
sinewave, this would be the peaks and troughs
of the sinusoid itself. Suppose for example that
it is the curvature of the contour which deter-
mines such blob visibility and that this rather
than lines supplied the input to the motion
system. Formally curvature is defined as

k =df/ds

where k is the curvature, 8 is the local direction
of the contour and s is the distance along the
arc. The maximum curvature is at the peaks and
troughs of the sinewave and this is proportional
to the square of spatial frequency (Spiegel,
1963). Thus a mechanism based on curvature
alone would predict a slope of —2 for the
rigidity data seen in Fig. 5 which was inconsis-
tent with the present data.

In contrast, our results support a dependence
on local angle difference. First we show that it
is the maximum angular difference between
local orientations of a sinusoidal line
which determines whether one sees rigidity.
Second, we show that this local angle alone
predicts direction discriminability.

One fact remains unexplained—our obser-
vations of perceived nonrigidity itself. From an
ideal mathematical point of view, all figures
undergoing pure translational motion should
be seen as rigid since there is a unique rigid
interpretation. The constraint lines for all local
motions meet a single point in velocity space
(see Hildreth, 1984). This idealized formulation,
however, ignores noise. Yet our results on dis-
crimination thresholds indicate that ‘“noise”
cannot be ignored accounts for the observers
ability to see differences in motion direction.
Thus, when the angle between two constraint
lines is very acute, the synthesized magnitude
becomes extremely uncertain and essentially
useless.

Functionally, therefore, the visual system is
placed in a dilema. Should it utilize these local
velocity signals to generate highly unreliable
conclusions or should it just accept the local
velocity vectors as is and skip the conclusions?
We suggest that it chooses the latter option even
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though this means seeing the local components
and comcomittant nonrigidity. Thus in Fig. 3(B)
the two local components move in opposite
directions and the observer sees nonrigidity.
One final question comes to mind. Consider
the local component labeled ¥ in Fig. 2(B). It
has the same amplitude and direction as a
corresponding component in Fig. 2(A) (see
short unlabeled arrow). In the latter case the
contour is seen as rigid whereas it is seen as
nonrigid in the former case. Why is this so? We
think it is the context of other motion com-
ponents that is of importance. In our compan-
jon paper (Nakayama and Silverman, 1988), we
show how these ordinarily nonrigid sections

of contour can be pulled along by velocity -

information from neighbouring loci along the
contour so that they appear as rigid.
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