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VECTOR FIELD: LIMITATIONS IMPOSED BY BIOLOGICAL HARDWARE
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In the past two decades there has been an increasing
awareness of the biological importance of optical flow fields.
This work has proceeded along three rather distinct paths: theo-
retical, psychophysical and physiological.

Theoretical work on this subject began with Helmholtz who
noted the difference in optical velocity for ‘different points of
the visual field corresponding to objects at different distances
(2). Thus began the use of the term motion parallax as a
potential cue to depth (3). Gibson elaborated this idea in
several ways. First, he emphasized the existence of higher order
invariant aspects of this vector field, noting how they carried
useful information, including the layout of surfaces in depth.
Later mathematical papers have shown that various :.bmmny
differential operators such as deformation, vorticity, dilation,
and acceleration contain rich and often explicit information.
including the layout of surfaces, the rigidity of objects, and
properties of observer motion (4, 5, 6). In addition, Nakayama
and Loomis (7) proposed a plausible neural operator which would
carry information regarding surface boundaries. This latter
proposal is summarized in Figures 1 and 2.

In terms of psychophysical studies, two sets of experiments
stand out. First was the demonstration of the kinetic depth
effect by Wallach and 0'Connell (8). They demonstrated that a
simple two dimensional shadow of a 3 dimensional figure can
appear in vivid depth when the figure is rotated. Under most
Clrcumstances, however, the depth percept remains ambiguous such
that near and far points are often seen in reversed depth. More
decisive was the recent discovery by Rogers and Graham




{ ‘convexity’

Figure 1. Physiological wiring diagram of the "convexity"
operator proposed to extract edges of three dimensional
objects for an observer translating through a rigid
environment. The convexity unit consists of subunits comprised
of Kuffler-type receptive fields summing center/surround
velocity signals antagonistically., FEach subunit is centered on
the same retinal locus and analyzes a particular direction of
motion. These subunits are then summed in an excitatory fashion
to obtain a "convexity" value for all portions of the visual
field. Such a function is insensitive to uniform motion in a
given retinal region and will only respond when there are
velocity discontinuities between neighboring regions in the
visual field (7).
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Figure 2. Illustrative example of how the convexity operator can
delineate the boundaries of real three dimensional objects. In A
and B, we simulate the same set of external environmental
features, consisting of a ground plane and a flat fronto-parallel
rectangular surface suspended over this ground plane. In A, the
observer is translating into the plane of the paper, in B he is
translating to the right. Note that the optical flow field looks
very different in each case. The convexity function of each flow
field, as represented by C and D, however, is essentially the
same, delineating the edge of the rectangular screen under very
different conditions. Thus, the convexity operator can encode
visual boundaries of 3-dimensional objects independent of changes
in the local direction of the motion vectors (7).
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(9) of a totally unambiguous depth percept from
differential motion of random dots. Pure depth without motion
can be seen despite the existence of differential retinal motion
created by their display. Thus Rogers and Graham's monocular
pattern is essentially indistinguishable from a random dot
stereogram (10). See Rogers (this volume).

Physiological recordings from single neurons show that
responses to moving configurations are rather similar to
theoretical mechanisms proposed to code significant features of
the optical flow field. Frost and Nakayama (11) found that all
units in the deeper layers of the pigeon optic tectum were
organized in a manner very similar to the "convexity" operator as
shown in Figure l. These cells responded to opposing motion of a
center spot with respect to a background independent of the
direction of movement. As expected, these cells did not respond
to whole field motion and this was further confirmed by
deoxyglucose mapping techniques (see Frost, this volume). Other
examples of the detection of relative motion by single units can
be seen in the cat striate cortex (l2; see also Hammond this
volume) and in MT cortex of monkey (13).

The remarkable convergence of these separate approaches
(theoretical, psychophysical, and physiological) suggests that
the vector field concept as originally proposed by Gibson and
elaborated more mathematically by others, might be regarded as a
promising approach. The flow field contains higher order
variables which are highly informative about the layout of
objects in the three dimensional world and the observer's own
movements. Humans actually see depth in flow fields. Finally,
neuro-physiological mechanisms exist which could code higher
order variables of the optic array.

Given this success it might seem lnappropriate to be critical
of this general line of thinking, especially as it provides an
exciting new way to understand a wide variety of phenomena. At
this point, it would also seem 1mportant, however, to evaluate
this approach in terms of newly emerging information regarding
the biological hardware characteristics of early motion
processing. Therefore, the major purpose of this paper is to
examine the degree to which the basic biological hardware of the
visual system might impose important constraints on how optical
flow fields might be encoded, thus providing some limits on
future mathematical theorizing.

Before proceeding we will recapitulate the general line of
thinking introduced by Gibson and followed by others, namely, the
vector field approach to the optical flow field. In this view,
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it is assumed that the vector field of optical velocities
contains very useful information and that it is encoded directly
and that higher order invariants of this field are derived. Some
of the information available by considering higher order
invariants is summarized in Table I.

Table I

Theoretical information available from higher order
variables of the optical flow field.

Information Higher order invariant Reference
or operator

1. Slant of surface Deformation Koenderink
& van Doorn
(4)
2. Gaussian curvature "
3. Rigidity of surface Second temporal Longuet-Higgins
derivative & Prazdny (6)
4. Time to collision Dilation Lee & Reddish
(14)
5. Visual boundaries Convexity . Nakayama
of 3-D objects & Loomis (7)

In theory, it might seem sufficient to compute these mathematical
aspects of the velocity field and very useful information would
emerge, information that would aid greatly in the organisms'
survival,

We need to remind ourselves at this point. however. that
these ideas are mathematical and physical concepts, not biological
Ones. Obviously the existence of information in the optic array
15 no guarantee that it will be used by ourselves or other
animals. As an analogy, consider the job faced by the astronomer-
an "observer" who has historically relied on data from the static
and changing optic array. From this he has measured the distances
om the stars and their atomic composition. All of this very
significant information about object properties is clearly
available in the optic array, yet our own visual system cannot
encode ‘it without the use of specialized optical instruments
Amvmnnnomnmv:m. telescopes, etc). We are biological creatures,
evolved to obtain particular sorts of information and limited by
the capacities of our optical and neurosensory systems. In this
Paper I suggest the existence of at least three limitations
lmposed by the properties of our motion sensing system.




1. SPATIAL BANDWIDTH LIMITATIONS

The visual system encodes luminance variations to ounly a
finite level of spatial detail. Thus the well known contrast
sensitivity function in humans falls off above 6 cycles/degree in
the fovea and at progressively lower values in the periphery
(16). With differential shearing motion. however. there appears’
to be a reduction in sensitivity above 0.6 cycles/degree; ten
times lower than for luminance senmsitivity (15). (See Figure 3).
The lack of spatial resolution means that the motion threshold is
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Figure 3. Spatial bandwith limitations for motion semsitivity.
Shearing motion thesholds as a function of the spatial frequency
of the shearing motion. Stimulus is a screen full of random dots
vhere the horizontal shearing motion is a sinusoidal function of
vertical position. Note that thresholds rise above around 0.6
cycles/degree. Temporal frequency is 2 Hz (15).

not based on the velocities of individual points but rather on
their mean value integrated over a large distance, perhaps by as
much as 15' in the foveal area. Evidence also suggests that the
integration of motion is anisotropic, having summation properties
greater in a direction orthogonal to the local motion vector
rather than parallel to it (17). The spatial bandwidth for
compressive motion is about twice the bandwidth for shearing
motion. .The existence of a rathér large elongated receptive
field for the encoding of motion even in the fovea suggests
higher-order consequences. It implies that any hypothetical
topographic map of velocities must be significantly smeared and
more 80 in the direction orthogonal to the local motion vector
than parallel to it.

In terms of the higher order encoding of the velocity field,
it suggests that the mathematical operation of taking a spatial
derivative of the motion field is somewhat misleading. More
likely, the system first integrates the velocity signal
spatially, then takes spatial derivatives. This was implied by
Nakayama and Loomis (7) in their definition of the convexity
operator and explicitly formulated mathematically in the
luminance domain by Marr and Hildreth (18). In practice, this
means that any information derived from the optical flow field is
spatially very coarse.

This coarseness is clearly seen in the results of Rogers and
Graham (9) where the appreciation of depth from motion is very
reduced above the very low spatial frequency of 0.5
cycles/degree, even though the appreciation of fine luminance
detail is reduced only for patterns ten times as fine.

Our spatial resolution is limited more in depth than in
luminance. For example, in a dense forest scene we have
sufficient luminance resolution to resolve individual leaves on
trees but because of the lack of spatial resolution in the motion
system, we cannot sense their individual depth values. We see
depth, but more coarsely. more at the level of clumps or branches
containing many leaves. A strikingly similar lack of depth
resolution was originally described for stereopsis (19).

This lack of spatial resolution is not necessarily a
biological handicap. On the contrary, the low resolution of the
motion system would be advantageous, providing useful information
without requiring a reduplication of yet another high resolution
representation, and its concomittant need for a large number of
neurons. A similar situation exists in the encoding of
chromaticity, especially pronounced in the blue cone pathway.
Blue cones are extremely sparse yet they provide a vivid percept
of color, one that is an extremely useful adjunct in the process
of image segmentation,
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2. TEMPORAL BANDWIDTH LIMITATIONS

The visual system is limited temporally as well as spatially.
The modulation sensitivity for flicker falls off above 10-20 Hz
depending on the brightness and configuration of the stimulus
(20, 21). The temporal bandwidth of the motion system is much
lower. This can be measured psychophysically by presenting a
shearing motion in random dots and varying temporal frequency. If
one plots the threshold peak velocity of the sinusoidal temporal
stimulus, it rises rapidly above 1 Hz (see Figure 4). This
indicates that motion information is temporally integrated, a
property embodied in many previous models of motion processing
(22,23,24).
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Figure 4. Temporal bandwidth limitations for motion sensitivity.
Shearing velocity thresholds as a function of temporal frequency
of sinusoidal oscillation of random dots. Note that thresholds
rise above 1 Hz. (Replotted from similar data described in
reterence 15, Figure 3.)
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What are the implications of this lack of temporal resolution
in motion semsitivity? There are at least two and they are
related. First we should note that this property of temporal
low-pass filtering puts a rather severe limitation on the visual
system's ability to sense acceleration. Thus mathematical
descriptions of the acceleration field (25) as well as
computational theories to derive information from this field are
likely to have limited applicability. As an example, the
checking of object rigidity by calculating the acceleration may
prove too slow to have functional value (6). Empirical work
where acceleration sensitivity 1is measured confirms this view.
Acceleration is poorly detected (26).

In addition. the low temporal frequency sensitivity of the
visual motion system also casts doubts on theories or
formulations requiring 3 views in close succession. Ullman's
(27) structure from motion theorem would seem to have reduced
biological applicability insofar as his theory implicitly
requires the pick-up of 2 different velocity snapshots in quick
succession, a property severely limited by the low-pass
characteristics of motion sensitivity.

3. LIMITATIONS IMPOSED BY NON-~LINEARITIES (WEBER'S LAW FOR
VELOCITY)

Up until now all mathematical theories suggesting mechanisms
to extract information from velocity vector fields have employed
linear differential operators. Thus the curl of the velocity
field can be defined independent of other terms, such as
divergence. or common image motion. As an illustrative example,
consider how the system might compute the gradient of the
velocity field (Gibson's original proposal), obtaining a 2x2
matrix summarizing how the x and y components of the velocity
field vary in the x and y direction (5).

v v
_x __x
3X 3y
Grad V = (L
v v
oy ¥
ax aY

where <N. <% are the x and y components of V. Suppose that we
were to add’a common motion vector C in a given neighborhood,
Perhaps resulting as a consequence of an eye movement. Then
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mathematically

Grad (V+C)=GradV (2)

because the constant term C has a derivative of zero.

As a consequence of Weber's law, sotmwmn. one cannot assume
the nervous system can obtain an unvarying Grad V for various
degrees of added common image motion (C). Most neur onal signals
are proportional to the wamvnwjm level of mnwscwwnwon and as a
corollary the nervous sytem 18 generally unsuited mom the
accurate differencing of large signals independent of signal
level. Thus, it might not be expected to compute the terms of
Crad (V + C), especially for large values of C. msvwnwmmw
evidence supports this completely. By measuring the sensitivity
to shearing motion in random dots, Nakayama (28) was able to show
a progressive rise in differential shearing thresholds even for
rather small amounts of common motion, (C). The relation
followed Weber's law, having a Weber fraction of about .05. A
similar adherence to Weber's Law was also seen for a wide range
of suprathreshold velocity differences (29).

The existence of Weber's law for velocity suggests that the
nervous system cannot make accurate measurements of Grad V or
its components, nor can it compute any other linear differential
operation. As a consequence, all mathematical theories at least
those proposed so far, have limited applicability. We must
recognize that the nervous system can extract biologically
relevant information but that it cannot do it in the form
specifically described by the simple differencing operation
implied by taking a spatial derivative. Iwo alternatives deserve
consideration: first is the possibility of other algorithms,
taking the ratio of velocities of neighboring regions. This is
consistent with the data and has some computational advantages
(see ref. 7). Second one might question the need for highly
metrical data at all. Perhaps ordinal relations are sufficient
to obtain the needed information.

CONCLUSIONS

Very useful information is theoretically available from the
vector field of optical velocities and humans respond to an
array of differentially moving points by seeing depth
unambiguously. Furthermore, it is possible that physiological
mechanisms can code important higher order aspects of the
velocity field and could provide the basis for image segmentation
and depth discrimination.

L)

The analysis of the moving optic array, however, 1is
constrained by the hardware characteristics of the neurosensory
encoding system. In particular. the spatial and temporal
resolution of the movement system severely limits the amount
of potential information that can be obtained from the optical
velocity vector field, suggesting that the information provided
is spatially very coarse and temporally very slow.

Finally, the existence of a Weber's law non-linearity for
velocity limits the applicability of current mathematical
theories which extract higher order spatial derivatives of the
optical flow field. Other approaches based on taking ratios of
neighborning velocities or even non—metrical schemes might be
considered.
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