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ABSTRACT

A method is described which completely
determines the rotational state of the
eye in terms of three spherical angles

or in terms of an axis of rotation and

an extent of rotation. The experimental
method consists of photographing two
distinct markers on the globe through

a telepboto lens. The data transfor-
mation relies on the fact that the
rotation of a rigid body can be des-
cribed by an orthogonal matrix and that
the resultant rotation of successive
rotations can be represented by the
product of such matrices.
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A number of recent studies have emphasized
the importance of the kinemarics of eye rota-
tion in the understanding of the oculomotor
control system. For example, kinematic con-
siderations alone show that smooth pursuit
movements are subserved by a different control
mechanism than the eye positioning saccadic
system.!*? Another study has shown that the
cat eye follows Listing’s law when the animal is
awake, but not when he is asleep.3 further
emphasizing that the kinematic laws of. eye
rotation are behavioral laws determined by the
central nervous system, and not simply the
result of peripheral. mechanical constraints.
These studies prompt physiological and clinical
questions, and it seems clear that a simple,
accurate and reliable technique to completely
specify the rotational state of the eye will be of
increasing importance.

The experimental technique 1 describe is
very simple and it can be used both for human
and animal subjects. It consists of utilizing two
available markers on the globe (episcleral
vessels, limbal conjunctival vessels or natural
pigmentation marks) or the placement of a pair

*Submitted December 27, 1973 for publication in the
October, 1974 issue of the AMERICAN JOURNAL
.OF OPTOMETRY AND PHYSIOLOGICAL OPTICS.
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FIGURE 1: Coordinate system used in this discussion
with pictorial description at angles ©, & and V. OQ is
the line representing the direction regard. The positive
Y axis represents the direction at regard when the eye
is in the primary position.

,

of markers on the cornea. To avoid perspective
distortion, the eve is photographed from a dis-
tance of over 50 centimeters from a direction
corresponding to the primary position. The
analysis requires an estimate of the center of
rotation of thé eye, the distance from the
markers to this center, and the marker coor-
dinates on the photographs when the eye is in
the primary position. Furthermore, it is
assumed that the distance of each marker to the
center of rotation is the same.

Although this technique is not an on-line
technique, I believe it has the potential of being
on-line, or nearly so, with the use of a photo-
electric flying spot scanning system and a small
digital computer.

This paper confines itself to a description of
the mathematical data transformation necessary
to completely specify the rotational state of the
eye from the position of the two marks on the
photographs before and after a rotation. The
transformation relies principally on the fact
that the rotation of any rigid body can be
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described by an orthogonal matrix, and that the
resultant rotation of successive rotations can be
expressed as a product of the matrices of the
component rotations.* A small programmable
desk computer (Hewlett Packard 9820) was
used to perform the transformation.

MATHEMATICAL ANALYSIS

I adopt a Fick :type coordinate system
described elsewhere.’ It is a left-handed system
of axes for the left eye (Figure 1). The visual
axis is coincident with the Y axis when the eye
is in the primary position, the Z axis is the
vertical axis positive upward, and the horizontal
X axis is positive towards the ipsilateral temple.
The origin is at the center of rotation of the
eye. For clarification, 1 add that there are in
reality two sets of X, Y, Z axes: one fixed in
the head, designated X, Y, Z; and the other
fixed in the globe, designated X', Y', Z’. When
the eye is in the primary position, these two
sets of axes are coincident. All coordinates and
axes unless specified will refer to the axes
which are defined with respect to the head.

Any eye position can be described complete-
ly by three spherical angles (often referred to as
Euler angles); following Robinson,’ 1 define an
angle ® which makes a right-handed rotation
about the globe z' axis, an angle ® which
defines a left-handed rotation about the globe
X' axis, and an angle ¥ which defines a left-
handed rotation about the globe Y’ axis
(Figure 1).

The x, y, z coordinates of any globe marker
can be experimentally determined from the
photographs by noting the fact that if the
entrance pupil of the camera is sufficiently far
from the eye, the locus of globe markers is
projected onto the film of the camera as a plane
parallel or orthographic projection. Thus the
horizontal and vertical distances on the photo-
graphs are linearly related to the x and z dis-
tances. The y coordinate can be determined
from the following expression

y=V1-(*+2% (1)

.

where the values x and z are scaled such that
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the distance from marker to the center of rota-
tion is equal to 1. This distance can be
estimated from a schematic eye, or it can be
determined by having the subject make eye
deviations of known eccentricity, and noting
changes in the position of the globe marks on
the photographs. )

In order to completely determine the
rotational state of the eye in terms of three
independent parameters such as the three
spherical angles described above, I rely on the
fact that the change of position of a body point
under a rigid body rotation can be expressed as
a matrix multiplication:

(2)

Xy X
yi J=R{ v (3a)
7.,' 7
Xz’ X2
y2 |=R{ 2 (3b)
Zz’ Zy

If I can find this R matrix, 1 will be able to
describe the rotation in terms of ©, ® and ¥,
since any rotation matrix can be written in
terms of three Euler angles. For example, the R
matrix, designated by nine coefficients, is:

. Ri1 Ri2 Ry
R = R2| Rzz R23 (48.)
R31 R32 R33

These coefficients can be expressed in terms of
three spherical angles as follows (see Appendix
for derivation):

cos ® cos ¥ + cosPsin® | sinV¥ cos O -
sin © sin & sin ¥ sin © sin ¢ cos ¥
R =} sin ¥ sin & cos © <[cos P cos ® |-sin ¥ sin O (4b)
sin © cos ¥ -cos © cos ¥ sin &
sin ¥ cos ¢ sin ¢ cos ¥ cos @

In the above equation x, y, z and ' y', z' are
the coordinates of any point on the rigid body
before and after the rotation, respectively. R is
a 3 x 3 orthogonal matrix.*

Now consider the pair of points P, and P,
which are located on the surface of the globe
when the eye is in the primary position. P, and
P, have the coordinates (x,, y;, z,) and (x;,
Y2, z2) respectively. The set of coordinates of
the point is also called a position vector.

Now if the globe moves through any particu-
lar rotation with angles ©, ® and W, the points
P, and P, will move to new positions which 1
shall call P, and P; with coordinates (x(, yl',
z)) and (x5, yz', z;) (see Figure 2).

Given the position vectors of P, and P,
before and after the rotation, there exists a
single rotation matrix R which will take both
points, P, and P,, to their final positions, P,
and P, respectively.
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If 1 can determine the nine coefficients of the
rotation matrix R, I can obtain the values of ©®,
$ and ¥ from Equation 4a and 4b, since all
terms of the matrix can be expressed in terms

of ®, d and V.

b = sin'l R32 (Sa)
® =sin™’ (c——ci"; ) (5b)
¥ = sin”! (C(-)}:ibl) (5¢)

Therefore the task is to find the R matrix. In
practice it is difficult to deal directly with the
Equations 5a, 5b,and 5¢ to get the angles ©, &,
¥ and the R matrix, as these require the
solution of simultaneous nonlinear equations.

In order to simplify the problem further, it
is convenient to rotate the axes of the head
based coordinate system, so that one of the

"points Py has the coordinates (0, 1, 0). I do this
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by rotating the head axes by a right-handed
rotation through angle alpha (@)about Z and a
left-handed rotation through angle beta (8)
about X', with

! [ XL
@ = tan (y:) (6)

“y
B = sin’! > 5 > - 2
(Xl +yl +7‘l )I/‘

I call this new head based coordinate system
A, B, C. In order to express all points P, P,,
P, and P, in terms of the new A, B, C set of axes,
I need to multiply the coordinates of each
marker or position vector by a martrix T, where:

COSs O -$in 0
T =( sin @ cosf{cosa cosf |sinf (8)

-sin & sin B |-cosa sinf {cosf

Therefore T transforms each position vector
{escribed in terms of X, Y, Z into the new
coordinates A, B, C:

Xl H Y 0
T Y| = b) = 1 (9)
zZ, Cy 0
X3 a2
T y2 )= { b2
Zy Ca
Xll 3.|'
T vi J=1 by (10)
Z|' Cl'
le ?12'
T yzl = b-zl
Z2’ Cz’

Working in this new A, B, C system, I am faced
with the problem of finding a rotation matrix
R’ which will transform vectors (a,b;c,) to
(a’'b)'c)) and (azbycy) to (ayb;cy). The prob-
lem is easily soluble since one of the vectors,
namely (a;b,c¢;) is in the simple form of
(0,1.0). For matrix R' 1 define three angles
analogous to our desired @ dand ¥ and call them
Q" ¢, ¥'. The rotation of the two points in
this new A, B, C coordinate system can be
expressed algebraieally as:
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FIGURE 2: Schematic representation of photographs
of eye markers Py and P, when the eye is in the
primary position. P{ and P; refer to the markers when
the eye is in a particular tertiary position. A single
rotation matrix R will take Py to P{ and P, to P,.

R} Ri; Ry 0 a;
Ry; Ri: Rj; 1 )=l b (11)
R3; R32 Rj; 0 ¢
Ri1 Riz Ris\ fa\ fa:
Ry, R32 R3; b2 }={ b2 (12)
R3; Rj2 Rj; 2 ch

To determine expressions for the coefficients of

the R’ matrix, refer to Equation 4b, substitut-
ing R’ for R and @, &' and ¥ for ©, & and ¥,
respectively. .

I can now solve for angles @', &' and ¥ by
selecting particular equations contained in
Equations (11) and (12). Specifically from the
third row of (11), R}, is the only relevant term
since the other two coefficients are multiplied

by zero, so:
R3: = ¢ .
sind = ¢} i (13)
¢ = sin'lcll,

Knowing &' I can find @ from top row equa-
tion in (11) since:

R}, = a11
sin @ cos® = aj a (14
@ = sin'! [—'l——,]
. Leos @)
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Since 1 know & and @', I use the information
from the third row equation in (12) to find v,
Thus:

-a; sin ¥ cos @ + b, sin @’ (15a)
+cy cos ¥ cos @ = ¢y
cos ¥ ¢, sin ¥ a; =k (15b)
where k =¢; -sin®' b,
S s> b,
cos ¢
Ri1 Ri2 Ry Tii T21 Tay
Ra1 Rz2 Ry3 J={Ti2 T2y T3,
R31 R3z Rjj Ti3 T23 T3s

Then the trigometric equation (15b) can be put
in the form of a quadratic, with the solution:

| +' 2 _
x=sin\Il'= b— b 4 ac

2a (16)

where: a= a22 + c22 (172)
b = 2a,k (17b)

c=k? -2 (17¢)

The equation has two roots and thus ¥ has
two possible values. The meaningful value of ¥’
can be determined by substituting the values
for ©', @ and each particular ¥’ in the first
row equation of (12). Thus:

’ ’ . ' . ’ .

cos V' cos ® a, + sin @ sin @' sin ¥’ a, +
’ . ’ . ’ ! »

cos® sin® by +sin¥ cos@ ¢ —

. ’ 1 - r

sin ® cos ¥ sin @' ¢, = a3,

(18)

The value of ¥’ coming from (16) which best
predicts the value of a, in Equation (18) is
chosen as the proper value.

Now given @', @ and W' I can obtain all the
coefficients of the R" matrix, using the evalua-
tion of all the coefficients in terms of @, ® and
¥ in Equation 4b.

Now consider the series of successive rota-
tions represented by T then R’ and then T'',
where T'! is the inverse of T. The composite of
these three rotations will be equivalent to the sin-
gle rotation R, and this can be seen most clearly
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by noting that the three successive rotations also
take the points P, and P, to P| and P;, respec-
tively. Since the matrix of a single rotation is
equivalent to the product of the matrices of the
component rotations,? the nine coefficients of
the R matrix can be obtained simply by multi-
plying the matrices corresponding to the com-
ponent rotations. Thus:

R=T'R'T (19)
or
Ri\ Riz Ris\ /Ti1 Tiz Tis
[ ’ !
R21 Rz3 Ry3 Jf T2y T2z T2 20)

R3, R32 R33/ \T31 T3z T3 .

Note that T'! is the transpose of T, since the
inverse of an orthogonal matrix is its transpose.
Now that I have the coefficients of the R
matrix from Equation 20, the angles ©,¢ and ¥
can be easily determined from the Equations
Sa, 5b and 5c.

AXIS AND EXTENT OF ROTATION
Instead of expressing the rotational state of the
eye in terms of three spherical angles, it may
also be useful to express the position of the
globe in terms of a single rotation from the
primary position. This description is in terms of
an axis of rotation and a magnitude of a single
rotation which takes the globe from primary to
the particular gaze position. Any rotational
state of the globe can be described in this
manner, and it should be noted in particular
that if Listing’s Law is true for a particular eye,
all such axes must lie in a plane.®

To determine the axis of rotation, I rely on
the fact that all points lying on the axis of
rotation are unchanged by the rotation. There-
fore there exists a set of position vectors along
the axis (also called eigen vectors) which remain
invariant under the rotation transformation.
Therefore:

Ry Ryz Ris X X
Rar Ryz Ras iy J= Ly }ot (21)
z z

R3, R3z Rss
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.(Rll-])X+R|2y+R137,=O
Rayx+{(Ryy-1)y + Ry3z=0 (22)
Ryjx+ R32y+(R33'1)Z= 0.

The above set of homogenous linear equations
cannot furnish definite values of x,y,z but only
their relative ratios. However, I am interested
only in the orientation of the axis of rotation in
space, and these ratios completely specify the
axis of rotation being direction numbers
specifying the line.” Usually the most con-
venient method of specifying a line such as an
axis, is to specify the components of that line
were it a vector of unit length and these compo-
nents are termed the direction cosines of the
line. Therefore, 1 can find a particular set x,y,z
which satisfies the expression

'x2+y2+22=1- (23)

These particular values which satisfy Equation
22 are called the direction cosines of the axis of
rotation, A, g and v, respectively.

In order to find the extent of the rotatior, |
first consider any unit vector perpendicular to
the axis of rotation and call this vector (a,b,c).
To be perpendicular to the axis of rotation, the
dot product of this vector and the unit axis
vector must be zero. Thus,

Aa+ub+vec=0. 24)

If I multiply this perpendicular unit vector
(a,b,c) by the rotation matrix R which I found
carlier, I define a new vector:

a a
b} =R b 25)
C' C

Since the angle made by a line perpendicular to
an axis at rotation is equivalent to the magni-
tude of a rotation, the angle W between posi-
tion vectors (a,b,c) and (a'b'c’) is the magnitude
of the rotation. The cosine of this angle W is
equal to the dot product of this unit vector
before and after the rotation. Thus:

W = cos ! [aa" + bb' + cc]. (26)
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APPENDIX:

DERIVATION

OF THE R MATRIX

The R matrix represents the resultant of three
rotations about the three globe axes. Each
individual rotation can be considered as a
simple two-dimensional rotation, since any
rotation about an axis always leaves the co-
ordinates of that axis unchanged. The rotation
matrices corresponding to @, ® and ¥ are

cos © sin © 0

Rg = |-sin © cos © 0 (Al)
0 0 1
1 0 0

Re= 1[0 cos P -sin ¢ (A2)
0 sm®d cosP

and :

cosV O sinV¥

0 1 0 (A3)

sin¥ 0 cosV¥/,

Ry

Any rortation can be described by a matrix,
and the resultant rotation of successive rota-
tions is also a matrix.* Furthermore, the matrix
corresponding to a resultant rotation is equal to
the product of its component matrices.
Therefore:

R =Rg R¢ Ry (A4)

which gives me the coefficients of the R matrix
in terms of ©, ® and ¥, which is described in
Equation 4b.
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