Attentional resolution and the locus of visual awareness

Sheng He, Patrick Cavanagh & James Intriligator

Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA

Visual spatial resolution is limited by factors ranging from optics to neuronal filters in the visual cortex\(^{12}\), but it is not known to what extent it is also limited by the resolving power of attention. To investigate this, we studied adaptation to lines of specific orientation, a process that occurs in primary visual cortex\(^{3}\). When a single grating is presented in the periphery of the visual field, human observers are aware of its orientation, but when it is flanked by other similar gratings ('crowding'), its orientation becomes impossible to discern\(^{4}\). Nevertheless, we show that orientation-specific adaptation is not affected by crowding, implying that spatial resolution is limited by an attentional filter acting beyond the primary visual cortex. Consistent with this, we find that attentional resolution is greater in the lower
FIG. 1. Orientation-selective adaptation when subjects could and could not perceive the orientation of the adapting grating (fourth grating from the fixation point). In all experiments, stimuli were circular patches of binocular stimuli. a, Contrast thresholds were measured for three conditions: adapted to a single grating; adapted to the fourth stimulus in a linear array of five; no adaptation (baseline). The adapting grating and test grating were centred 25° above the point of visual fixation. The radius for each grating was 2.67°, and the centre-to-centre distance between neighbouring gratings was 6.67°. Except in the baseline condition, subjects were exposed to a continuous 5-s adaptation, 300-ms interstimulus interval, 180-ms test cycle, during which threshold contrast for the test grating was set by the subjects. Settings were not recorded during the first 10 cycles to ensure that subjects could achieve a stable adapted state. For each adapting–testing cycle, the orientation of the first grating was randomly chosen to be either 45° or 135°, and the orientation of the other three was successively rotated by 90°. Orientation of the fourth target grating was predetermined and remained the same for each session. b, Threshold contrast elevation after adaptation, compared with baseline contrast threshold before adaptation. Mean of four subjects; error bars show s.e.m. The difference between same adapt–test orientation and different adapt–test orientation represents the strength of orientation selective adaptation. The data show that a flanked grating (orientation not perceived) and a single grating (orientation readily perceived) were almost equally effective in orientation-specific adaptation.

than in the upper visual field, whereas there is no corresponding asymmetry in the primary visual cortex. We suggest that the attentional filter acts in one or more higher visual cortical areas to restrict the availability of visual information to conscious awareness.

A high-contrast adapting grating patch of one cycle per degree was presented 25° above the point of visual fixation. When presented alone, the orientation of the grating was clearly visible even at contrasts of less than 10%. When the same adapting grating was presented fourth in a linear array of five similar grating patches (maximizing the crowding effect), subjects identified the orientation at chance levels, even with unlimited viewing time at full contrast (Fig. 1a). We tested whether there was any orientation-specific analysis of the grating when the subjects were unaware of the orientation. Observers were adapted to a target grating presented alone or with flanking gratings (one above and three below the target), and then were tested on their ability to identify the orientation of the grating either at the same or orthogonal orientation presented at the target position (Fig. 1a). When observers were adapted to a crowded grating (and were unaware of its orientation), the contrast thresholds in tests in which the grating was of the same orientation as the adapting grating were roughly 2 to 3 times higher than for tests using the orthogonal orientation (see Fig. 1b). We found this same orientation-specific threshold elevation when observers were adapted to a single grating, and were aware of its orientation. There is a clear dissociation between perceptual awareness of orientation and orientation-specific adaptation (located at or beyond the primary visual cortex (area V1), the first site of orientation processing). The results indicate that visual awareness, and the `crowding' that blocks it, occur after orientation analysis in the visual information processing stream. Others have reported that unresolvable high-frequency gratings can produce orientation-specific adaptation (7) and orientation information can be used for segmentation without the explicit knowledge of the subject (8). Our results indicate further that activation of neurons in V1 is insufficient for conscious perception.

Conventionally, the reduced sensitivity to targets embedded in a field of similar items is termed `lateral masking' and is often attributed to lateral inhibition between neighbouring neurons at early stages of processing (9). We show that the information that is inaccessible to perceptual awareness because of crowding, is in fact processed by the primary visual cortex without disruption, ruling out the simplest sensory lateral masking explanation. We believe that this crowding effect reflects the limited resolution of the spatial attention mechanism.

The crowding effect seemed stronger in the upper visual field than in the lower field. Lesion (10) and functional magnetic resonance imaging (fMRI) studies show that human primary visual cortex devotes roughly the same area to the representations of the...
upper and lower visual fields. Consequently, we would not expect any asymmetry in crowding effects if performance were determined principally in the primary visual cortex. To test this prediction, we compared performance in the upper and lower visual fields directly in an orientation discrimination task. Rather than maximizing the crowding effect with a radial stimulus organization as in the first experiment, we arranged the stimuli horizontally to reduce crowding and to expose any modulation by visual field. The stimulus consisted of either a single grating patch or the same grating patch flanked by four similar patches, two on each side (Fig. 2a). The target grating was tilted either to the right (45°) or to the left (135°). Subjects were asked to fixate a point above the stimulus pattern in half of the trials, and a point the same distance below it on the other half. The stimulus was presented briefly (180 ms), and subjects were asked to press one of two keys to indicate which way the central grating was tilted, guessing if necessary. The results (Fig. 2b) reveal a strong asymmetry in performance: crowding reduced the accuracy of report significantly more when the target was in the upper visual field than when it was in the lower field.

If crowding is a result of insufficient spatial resolution of attention, then performance in tasks that require more focused attention should be better when the stimuli is presented in the lower visual field than in the upper visual field, whereas tasks that demand little focused attention should show little or no asymmetry. Visual search tasks provide examples of both attentional categories. Many studies have shown that searches for feature-defined targets (where the target has the odd feature in an otherwise homogeneous array) require little focused attention, whereas searches for conjunction targets (where targets and distractors share features but differ in how they are combined) often require focused attention. We used two simplified versions of these tasks. Five items were presented along a vertical line above or below the point of visual fixation. In half of the trials, the item in the centre was the prespecified target, and in the other trials, the central item was a distractor. In the feature detection condition, the target was a line angled at 45° among 135° distractors, and in the conjunction detection condition, the target was a vertical and a horizontal line arranged in a 'T' shape rotated by 90° to the right, with distractors of the same shape in the three other orientations (upright, upside down, 90° rotation to the left). The target and distractors all contain the same features and are distinguished only by the conjunction of their positions (Fig. 3a). In the feature detection task, subjects performed equally well when targets were presented in the upper and lower visual field, whereas in the conjunction detection task, subjects showed the predicted, improved detection ability in the lower visual field (Fig. 3b).

Finally, we used an attentional tracking task that places strong and constant demands on the attentional system. Subjects were presented with 9 green discs moving randomly in a rectangular area in the upper or lower visual field. At the start of each trial, two discs were identified as targets by briefly turning red. They then turned back to green and subjects were asked to track the two targets with their attention while fixating a central dot. At the end of 5s, all discs stopped moving and subjects were required to report which were the original targets. Tracking performance was significantly better in the lower visual field than in the upper visual field (Fig. 4).

Without distractors, perception of spatial details is limited by conventional visual resolution. However, when several items are presented, perception of the spatial details of a particular item seems to depend on the ability of attentional processes to isolate the item. This suggests that attentional resolution limits the access of spatial details to perceptual awareness. We believe that the frequently reported degradation of spatial information when...
several items are present in the visual field may be a result of this limitation.16,17 The asymmetry in attentional resolution between the upper and lower visual field may also contribute to the reported lower visual field advantage for the perception of global shape in tasks involving hierarchical structures where several elements are used.18,19

We attempted to locate the cortical area that mediates visual attention and limits the final access to our conscious vision. We show that stimuli not available to conscious perception could produce undiminished orientation-specific adaptation, a process that first occurs in primary visual cortex. Clearly, neuronal activity in the primary visual cortex is not sufficient for conscious perception. This is further supported by the fact that although there is little anatomical asymmetry between the upper and lower visual fields in human primary visual cortex,10,12 crowding and other manipulations of attentional load produced a large asymmetry favouring the lower visual field. The same holds for V2 as well. The dorsal parietal system has classically been associated with attentional processes,1,12 and the projections from early visual areas to the parietal regions are more numerous for the lower visual field than the upper field.22 We suggest that the dorsal parietal area may control attentional resolution and the information entering our conscious vision.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{A sample figure caption.}
\end{figure}

\begin{thebibliography}{99}
\end{thebibliography}

\section*{Acknowledgements} We thank K. Nakayama, N. Rubin, M. Chun, C. Moore, F. Verstraten and C. Koch for useful discussions. This work was supported by NIH grants to S.H. and P.C.

\section*{Correspondence} and requests for materials should be addressed to S.H. (e-mail: Sheng@wh.harvard.edu).

\end{document}