
category-selective regions (FFA/OFA, PPA/RSC, extrastriate body area/fusiform
body area, and lateral occipital). Participants were shown the same faces,
bodies, scenes, and objects that were used in the behavioral experiments (Fig.
S1), presented one at a time in each of the four quadrants [top left (TL), top
right (TR), bottom left (BL), bottom right (BR)], following a standard blocked
design. In each 16-s stimulus block, images from one category were presented
in isolation (one at a time) at one of the four locations; 10-s fixation blocks
intervened between each stimulus block. A total of 11 items were presented
per block for 1 s with a 0.45-s intervening blank. Participants were instructed to
maintain fixation on a central cross and to press a button indicating when the
same item appeared twice in a row, which happened once per block. For any
given run, all four stimulus categories were presented in two of the four pos-
sible locations, for two separate blocks per category × location pair, yielding 16
blocks per run. Across eight runs, the categories were presented at each pair of
locations (TL–TR; TL–BR; BL–BR; BL–TR), yielding eight blocks for each of the 16
category × location conditions (SI Materials and Methods provides information
on localizer runs).

Neural Separation Analysis. The logic of this analysis is to compute the pro-
portionof voxels that are activatedby any two categories (e.g., facesand scenes):
if no voxels are coactivated, there is 100% neural separation, whereas, if all
voxels are coactivated, there is 0% separation. This analysis relies on one free
parameter, which sets the percent of the most active voxels to consider as the
available representational resources of each object category. In addition, we
take into account location by considering the overlap between the two cate-
gories at all pairs of locations, and then averaging across location pairs.

To compute the neural separation between two categories within a sector
(e.g., faces and scenes in occipitotemporal cortex), we used the following

procedure. (i) The responses (β) for each category–location pair were sorted
and the top n (as a percentage) was selected for analysis, where nwas varied
from 1% to 99%. (ii) Percent overlap at a particular threshold was computed
as the number of voxels that were shared between any two conditions at
that threshold, divided by the number of selected voxels for each condition
(e.g., if 10 voxels overlap among the top 100 face voxels and the top 100
scene voxels, the face–scene overlap would be 10/100 = 10%). To take into
account location, percent overlap was calculated separately for all 12 pos-
sible location pairs, e.g., faces-TL–scenes-TR, faces-TL–scenes-BL, faces-TL–
scenes-BR. Fig. 2 shows an example whereby n = 10% for the activation
patterns of objects (purple) scenes(blue) and shared (yellow); and (iii) Finally,
we averaged across these 12 overlap estimates to compute the final overall
estimate of overlap between a pair of categories. This measure can be
interpreted as the degree to which two different categories in two different
locations will recruit similar cortical territory. We computed percent overlap
at each percentile (i.e., 1%–99% of the most active voxels), generating a
neural overlap curve, and converted this to a percentage separation mea-
sure by taking 1 minus the percent overlap. This procedure was conducted
for all pairs of categories, for all sectors, for all subjects.
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SI Materials and Methods
Behavioral Materials and Methods. Stimuli. For all behavioral
experiments, stimuli were presented on a 24-inch LCD monitor
with a 60-Hz refresh rate. Participants sat ∼57 cm away from the
monitor such that 1° of visual angle subtended 1 cm on the
display. Experiments were created and controlled on a computer
running MATLAB with the Psychophysics Toolbox (1, 2). Im-
ages were presented at 6° × 6° of visual angle, with a different
image appearing in each quadrant of the visual field, 8.4° away
from fixation. Within a hemifield, the center-to-center distance
of items was ∼7.5°, whereas the center-to-center distance of two
items that were in different hemifields but on the same horizontal
plane was 15.4°. A red fixation dot (0.55°) was presented in the
middle of the display. The background of the display had an
average luminance of 73.8 cd/m2.
Stimulus selection. Stimuli were chosen in an attempt to minimize
the possibility that participants could perform the task by focusing
on low- or midlevel features. All items were matched for lumi-
nance and contrast. All faces were vertically oriented, looking at
the camera, smiling, Caucasian, and approximately between the
ages of 20–50 y, and each image was cropped so the outer
contours of the head/hair were not showing. Thus, participants
would have to represent the “face” rather than notice a change
in outer contour or a difference in hair texture. Body images
were of a single individual (M.A.C.) wearing the same outfit in
a variety of action poses (e.g., jumping, throwing). Scenes were
a variety of natural scene categories that never contained faces,
bodies, or any of the objects from the object category. Objects
were specifically selected to have a similar, round outer contour.
This was done in an attempt to force participants to focus on the
object itself (e.g., an apple or a clock), rather than just focus on
the bounding contour alone.
Procedure. Each participant initially performed a calibration block
of same-category trials with their assigned categories (e.g., four
faces, four scenes). In this block, there were 30 practice trials and
120 experimental trials. Half the experimental trials were allocated
for each of the two assigned categories. QUEST, a Bayesian
adaptive staircase (3) procedure, was used to adaptively change
the transparency of the items until performance on same-cate-
gory displays for both categories was ∼70% (actual same-cate-
gory performance across all six conditions was 73.83%). These
transparency thresholds were then used for the stimuli in the main
experiment. In the main experiment, participants performed 20
practice trials followed by four blocks of 80 experimental trials (320
total experimental trials). Within a block, all trial types (e.g., same-
category/mixed-category, different types of mixed-category display
configurations) were shuffled and appeared in a random order.
Participants and exclusion criterion. To obtain an N = 10 for each
of the six category pairings (e.g., faces–scenes, faces–bodies), 55
participants completed one or more of the category-pairings ex-
periments. The visibility matching procedure described earlier was
designed to ensure that performance was equal on both the same-
category conditions. However, in some cases, individuals showed
large differences in performance across the two categories that
could not be eliminated with this procedure. Thus, participants
whose performance on the two same-category conditions differed
by more than 10% were excluded. To ensure that this procedure
did not result in an atypical sample, we correlated the size of the
mixed-category benefit when the exclusion criterion was and was
not applied. There was a very strong correlation between these
data sets (r = 0.93) with the different mixed-category benefits as
follows: faces and scenes, 5.2% with exclusion, 5.1% without

exclusion; bodies and scenes, 5.6% with exclusion, 5.2% with-
out exclusion; bodies and faces, 3.3% with exclusion, 3.2%
without exclusion; bodies and objects, 3.3% with exclusion,
4.2% without exclusion; faces and objects 2.4% with exclusion,
2.6% without exclusion; objects and scenes −0.8% with ex-
clusion, 2.1% without exclusion. Fig. S5 shows the different
brain/behavior correlations in occipitotemporal cortex using
the top 10% and area under the curve measurements with vs.
without excluded participants.

Functional MRI Acquisition. Structural and functional imaging data
were collected on a 3-T Siemens Trio scanner at the Harvard
University Center for Brain Sciences. Structural data were ob-
tained in 176 axial slices with 1 × 1 × 1 mm voxel resolution
(repetition time 2,200 ms). Functional blood oxygenation level-
dependent data were obtained by using a gradient-echo echo-
planar pulse sequence (33 axial slices parallel to the anterior
commissure–posterior commissure line; 70 × 70 matrix; field of
view 256 × 256 mm; 3.1 × 3.1 × 3.1 mm voxel resolution; gap
thickness 0.62 mm; repetition time 2,000 ms; echo time 60 ms;
flip angle = 90°). A 32-channel phased-array head coil was used.
Stimuli were generated using the Psychophysics toolbox for
MATLAB and displayed with an LCD projector onto a screen in
the scanner that subjects viewed via a mirror attached to the
head coil.

Functional MRI Experiment Localizer Runs. Meridian map runs. Par-
ticipants were instructed to maintain fixation and were shown
blocks of flickering black-and-white checkerboard wedge stimuli,
oriented along the vertical or horizontal meridian. The apex of
each wedge was at fixation and the base extended to 8° of visual
angle in the periphery, with a width of 4.42°. The checkerboard
pattern flickered at 8 Hz. The run consisted of four vertical
meridian and four horizontal meridian blocks. Each stimulus
block was 12 s with a 12-s intervening blank period. The orien-
tation of the stimuli (vertical vs. horizontal) alternated from one
block to the other.
Prefrontal cortex runs. Participants performed a change detection
task in which they had to say if an item changed between displays.
Each display consisted of four items with each item placed in one
of the four visual quadrants. The configuration of items on these
displays was not identical to the configuration used in the be-
havioral experiment (Fig. 1). In this case, all items were equi-
distant from fixation and each item was equally close to the two
adjacent items within and across the visual hemifields. On every
trial, all items came from the same category (e.g., four faces, four
bodies), with the images and locations selected randomly. The
first display appeared for 1 s, followed by a 0.7-s blank interval
with a fixation cross, and then a second display was presented
for 1 s. Participants responded during a 1.8-s intertrial interval.
Immediately before each trial, the black fixation dot turned red to
alert participants that the next trial was about to begin. A change
detection block consisted of eight trials, in which each of the four
categories was used on two trials. Changes occurred on half of
the trials such that a change occurred once with every category
in every block. Each run was composed of three change detection
blocks of 32 s each, with fixation periods of 32 s following
each block.
Localizer runs. Participants performed a one-back repetition de-
tection task with blocks of faces, bodies, scenes, objects, and
scrambled objects. Stimuli in these runs were different from those
in the experimental runs. Each run consisted of 10 stimulus blocks
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of 16 s, with intervening 12-s blank periods. Each category pre-
sented twice per run, with the order of the stimulus blocks
counterbalanced in a mirror reverse manner (e.g., face, body,
scene, object, scrambled, scrambled, objects, scene, body, face).
Within a block, each item was presented for 1 s followed by a 0.33-s
blank. Additionally, these localizer runs contained an orthogonal
motion manipulation: In half of the blocks, the items were pre-
sented statically at fixation; in the remaining half of the blocks,
items moved from the center of the screen toward either one of
the four quadrants or along the horizontal and vertical meridians
at 2.05 °/s. Each category was presented in a moving and sta-
tionary block.

Mixed-Category Benefit Analysis. The graded nature of the mixed
category benefit was evaluated by comparing regression models
whereby category pair was included as a factor (i.e., a separate
parameter was fit for each category pair) vs. not included as
a factor (i.e., a null model with an intercept term only). Model
comparison was conducted by ANOVA to test whether the model
that estimated the mix effect separately for each category pair fit
the data reliably better than a model that fit a single intercept
across all category pairs.

Functional MRI Data Analysis. All functional MRI (fMRI) data
were processed by using Brain Voyager QX software (Brain
Innovation). Preprocessing steps included 3D motion correction,
slice scan-time correction, linear trend removal, temporal high-
pass filtering (0.01-Hz cutoff), spatial smoothing (4 mm full width
at half-maximum kernel), and transformation into Talairach
space. Statistical analyses were based on the general linear model.
All general linear model (GLM) analyses included boxcar re-
gressors for each stimulus block convolved with a γ-function to
approximate the idealized hemodynamic response. Motion cor-
rection regressors were included as regressors of no interest. For
each experimental protocol, separate GLMs were computed for
each participant and run, yielding β-maps for each condition.

Defining Neural Sectors. Sectors were defined in each participant
using the following procedure. By using the localizer runs, a set
of visually active voxels was defined based on the contrast of
[faces + bodies + scenes + objects] vs. rest (false discovery rate <
0.05, cluster threshold 150 contiguous 1 × 1 × 1 voxels) within
a gray matter mask. To divide these visually responsive voxels
into sectors, the “EarlyV” sector included all active voxels within
V1, V2, and V3, which were defined by hand on an inflated
surface representation based on the horizontal vs. vertical con-
trasts of the meridian mapping experiment. The occipito-
temporal and occipitoparietal sectors were then defined as all
remaining active voxels (outside of EarlyV), where the division
between the dorsal and ventral streams was drawn by hand in
each participant starting at the edge of EarlyV and determined
by the spatial profile of active voxels along the surface. Finally,
the prefrontal cortex runs were used to identify the prefrontal
cortex sector from the contrast of working memory vs. rest; this
region was masked by the gray matter but not by visually active
voxels (because, for some subjects, no frontal voxels were sig-
nificantly visually active).

Neural Dissimilarity Analysis. This analysis follows the represen-
tational similarity methods outlined in the work of Kriegeskorte
et al. (4). For each pair of categories, we computed the Pearson
correlation between the response patterns (β) across the entire
sector (e.g., the occipitotemporal cortex), and converted this
to a dissimilarity measure (1 − r). Location was taken into ac-
count in the same way as described in the channel separation
analysis (Methods and Materials).

Category-Selective Region of Interest Analysis. To define category-
selective regions, we computed standard contrasts for face se-
lectivity [faces > (bodies scenes objects)], scene selectivity
[scenes > (bodies faces objects)], and body selectivity [bodies >
(faces scenes objects)] based on independent localizer runs. For
object-selective areas, the contrast of objects > scrambled was
used. In each participant, face-, body-, scene-, and object-selective
regions were defined by using a semiautomated procedure that
selects all significant voxels within a 9-mm radius spherical region
of interest (ROI) around the weighted center of category-selective
clusters (5), where the cluster is selected based on proximity to the
typical anatomical location of each region based on a meta-anal-
ysis. All ROIs for all participants were verified by eye and adjusted
if necessary. Category-selective regions included fusiform face
area (FFA) and fusiform body area (FBA) (faces), parahippocampal
place area (PPA) and retrosplenial cortex (RSC) (scenes), ex-
trastriate body area (EBA) and FBA (bodies), and lateral occipital
(LO) (objects).
We next computed neural dissimilarity inside the category-

selective ROIs for all pairs of categories, considering only the ROIs
specific for the two categories in each pair. For example, the
correlation between the response patterns to scenes and the re-
sponse patterns to faces was computed considering only the voxels
within scene- and face-selective regions, and converted to a dis-
similarity measures (1 − r). This dissimilarity measure for faces
and scenes was then compared with the size of the mixed-category
benefit with faces and scenes. Location was taken into account
following the same procedure described in the channel separation
analysis. To compute neural dissimilarity outside the category-
selective ROIs, the same procedure was followed, but the voxels
under consideration for scene and face competition, for example,
were all voxels in the occipitotemporal cortex that were not in any
of the scene- or face-selective regions.

Within-Subject Pattern Reliability. We computed the reliability of
neural response patterns separately for each fMRI participant
and each brain sector by using the following procedure. The data
were split into two halves, such that each half contained one run of
every possible location–location pairing [i.e., each half had a (top
left) − (bottom right) run, a (bottom left) − (bottom right) run].
Next, the pattern for each category in each location was corre-
lated between the two halves of the data (e.g., activity for faces in
the top left for half 1 was correlated with activity for faces in the
top left for half 2). This correlation was calculated for each
category in each location. Averaged across categories, locations,
and subjects, the overall correlations were quite high in each
sector (Fig. S3), indicating that these neural patterns were highly
reliable within subjects.

Between-Subject Consistency in Neural Overlap. In every sector of
each participant, the amount of overlap (top 10% and area under
the curve) or dissimilarity (1 − r) was calculated for each category
pairing. Those measurements across all category pairings (n = 6
total) were then compared between all subjects. The correlation
between each subject in every sector by using all three similarity
measures was quite high overall, indicating a high degree of
between-subject consistency in neural overlap between catego-
ries (Fig. S4).

Assessing the Statistical Significance of the Brain/Behavior Correlations.
All brain/behavior correlations were computed for each individual
fMRI subject against the group behavioral data. For each fMRI
subject, an r value (Pearson correlation value) was calculated by
using a particular neural similarity measure (i.e., neural separa-
tion, pattern dissimilarity). The r values obtained for a given brain/
behavior correlation were Fisher z-transformed and then tested
for statistical significance by using a random effects analysis. To
compare the relative strength of two given correlations (e.g., is the
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brain/behavior correlation stronger in occipitotemporal cortex
compared with early visual areas), a within-subject t test was
performed on the transformed correlation coefficients obtained
from two regions.
It should be noted that, in every subject, a brain/behavior

correlation was obtained by using the same group average be-
havioral data. However, despite the common behavioral mea-
sures, the brain/behavior correlation values across brain participants
are still independent from one another and are not intrinsically
correlated. Simulations were run to ensure the independence of
such correlation values andmore generally to validate the statistical
procedure used. In these simulations, the behavioral data were fixed
and the brain data were randomly set for each subject, the brain/
behavior correlation was obtained for each subject, and the dis-
tribution of these brain/behavior correlations was assessed. The
results of this simulation showed a null distribution of correlation
values centered around 0 that was well-approximated by a normal
distribution following the Fisher z-transformation.

Do Outlier Category Pairings Drive These Brain/Behavior Correlations?
Given that there were only six category pairings used in this
experiment, it is possible that one particular pairing (e.g., scenes
and bodies) could be an outlier that drives the observed corre-
lation. This possibility challenges our claim that the magnitude of
the mixed-category benefit for any category pairing is strongly
predicted by the amount of neural separation. To address this
concern, we conducted two supplemental analyses.

First, we conducted a bootstrap analysis, in which we sampled,
with replacement, six random categories pairings from the set,
and conducted the same analysis on that random sample. Thus,
on some iterations, a particular category pair (e.g., scenes and
bodies) will be left out completely, whereas, on other iterations,
that pair could be included multiple times (giving more weight to
that pairing). For each iteration, the random set of six category
pairings were used to calculate a new, subject-averaged brain/
behavior correlation. This process was repeated 10,000 times to
obtain a distribution of correlation values. We found that in,
occipitotemporal cortex, a brain/behavior correlation of zero was
not within the 95% interval when using the 10% overlap, area
under the curve, or pattern dissimilarity analysis (P < 0.05 in all
cases). As points of comparison, zero was within the 95% in-
terval in occipitoparietal, early visual, and prefrontal cortex for
all neural measure we used (P > 0.20 in all cases).
Second, we also analyzed the data after having excluded each of

the different category pairings one at a time (e.g., leave out faces
and scenes and keep the rest, leave out faces and bodies and keep
the rest). In this case, the brain/behavior correlations in occipi-
totemporal remained significant with all three neural measures
regardless of which of category pairings were left out (P < 0.01 in
all cases except when bodies and scenes were left out and we
used the pattern dissimilarity measure, in which P = 0.59). Taken
together, these two results suggest that the significant brain/
behavior correlations we find in occipitotemporal cortex are not
driven by outlier category pairings.
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Fig. S1. Stimuli used in all experiments. SI Materials and Methods provides a description on the stimulus selection criteria.
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Fig. S2. Performance for same-category conditions across all category pairings. Each group of bars reflects one of the six possible category pairings (e.g., faces
and scenes). Each bar reflects the percent correct on the displays in which all of the items were from the same category (e.g., all four faces or all four scenes).
Error bars reflect within-subject SEM. Note that, for each category pairing, the data here were averaged together to compute the same-category performance
data presented in Fig. 1.

Fig. S3. Brain/behavior correlations in occipitotemporal cortex for each fMRI participant, with behavioral subjects excluded (light blue) and without be-
havioral subjects excluded (dark blue). The brain/behavior correlation (r) is plotted on the y axis. Each bar represents an individual fMRI participant. Corre-
lations in occipitotemporal cortex when using (A) the 10% activation threshold and (B) the area under the AUC analysis.

All visually active voxels Manually drawn masks

Occipitoparietal
Mask

Occipitotemporal Mask

V1-V3

Fig. S4. All visually active voxels as obtained by the contrast [faces + bodies + scenes + objects] vs. rest (false discovery rate < 0.05, cluster threshold 150
contiguous 1 × 1 × 1 voxels) and shown on the inflated left hemisphere of a representative participant. For each participant, early visual cortex (V1–V3) was first
defined with meridian map on the inflated cortical surface. Once defined, masks for the occipitotemporal (light blue) and occipitoparietal (light green) cortices
were manually drawn starting at the edge of V1–V3, up through the division between the ventral and dorsal pathways on the lateral surface, and continued to
include all voxels within each pathway. It was from these masks that all active voxels were selected, which in turn became the ROIs used in the analysis.
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Fig. S5. Average within-subject split-half reliability of activation patterns, averaged across category, location, and subject. Error bars denote ±1 SEM. SI
Materials and Methods provides a description of how within-subject reliability was calculated.

Fig. S6. Between-subject consistency in neural separation. Each plot shows the correlation between subjects in the amount of neural separation for each
category pairing, with separate plots for each sector (rows) and for each neural separation measure (columns). Warmer colors denote higher correlations, and
cooler colors denote lower correlations.

Fig. S7. Brain/behavior correlation considering the category-selective ROIs within occipitotemporal cortex (Left) or excluding the category-selective ROIs
within occipitotemporal cortex (Right). For each category pairing, only the voxels selective for either of those two categories was included (faces, FFA/occipital
face area; bodies, EBA/FBA; scenes, PPA/RSC; and objects, LO). Each individual fMRI participant is plotted on the x axis. The y axis shows the brain/behavior
correlation (r) (SI Materials and Methods).
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